当前位置:首页 > 职场范文 > 承诺书

高一数学知识点总结

时间:2024-02-18 22:34:27
2021高一数学知识点总结

2021高一数学知识点总结

总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以提升我们发现问题的能力,是时候写一份总结了。但是却发现不知道该写些什么,以下是小编为大家收集的2021高一数学知识点总结,欢迎阅读与收藏。

2021高一数学知识点总结1

本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中点、线、面之间的位置关系,点、线、面的位置关系是立体几何的主要研究对象,同时也是空间图形最基本的几何元素.

重难点知识归纳

1、平面

(1)平面概念的理解

直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.

抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.

(2)平面的表示法

①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.

②字母表示:常用等希腊字母表示平面.

(3)涉及本部分内容的符号表示有:

①点A在直线l内,记作; ②点A不在直线l内,记作;

③点A在平面内,记作; ④点A不在平面内,记作;

⑤直线l在平面内,记作; ⑥直线l不在平面内,记作;

注意:符号的使用与集合中这四个符号的使用的区别与联系.

(4)平面的基本性质

公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.

符号表示为:.

注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.

公理2:过不在一条直线上的三点,有且只有一个平面.

符号表示为:直线AB存在唯一的平面,使得.

注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

符号表示为:.

注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.

公理的推论:

推论1:经过一条直线和直线外的一点有且只有一个平面.

推论2:经过两条相交直线有且只有一个平面.

推论3:经过两条平行直线有且只有一个平面.

2.空间直线

(1)空间两条直线的位置关系

①相交直线:有且仅有一个公共点,可表示为;

②平行直线:在同一个平面内,没有公共点,可表示为a//b;

③异面直线:不同在任何一个平面内,没有公共点.

(2)平行直线

公理4:平行于同一条直线的两条直线互相平行.

符号表示为:设a、b、c是三条直线,.

定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.

(3)两条异面直线所成的角

注意:

①两条异面直线a,b所成的角的范围是(0°,90°].

②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.

③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:

(i)在空间任取一点,这个点通常是线段的中点或端点.

(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.

(iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围.

3.空间直线与平面

直线与平面位置关系有且只有三种:

(1)直线在平面内:有无数个公共点;

(2)直线与平面相交:有且只有一个公共点;

(3)直线与平面平行:没有公共点.

4.平面与平面

两个平面之间的位置关系有且只有以下两种:

(1)两个平面平行:没有公共点;

(2)两个平面相交:有一条公共直线.

2021高一数学知识点总结2

一:函数及其表示

知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等

1. 函数与映射的区别:

2. 求函数定义域

常见的用解析式表示的函数f(x)的定义域可以归纳如下:

①当f(x)为整式时,函数的定义域为R.

②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

3. 求函数值域

(1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;

(2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;

(3)、判别式法:

(4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;

(5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;

(6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;

(7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;

(8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a). ……此处隐藏9861个字……AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

【基本初等函数】

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

【函数的应用】

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

1(代数法)求方程的实数根;

2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

2021高一数学知识点总结14

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180

(2)直线的斜率

①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

⑤一般式:(A,B不全为0)

注意:○1各式的适用范围

○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(4)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)过定点的直线系

(ⅰ)斜率为k的直线系:直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

(5)两直线平行与垂直;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(6)两条直线的交点

相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合

(7)两点间距离公式:设是平面直角坐标系中的两个点,则

(8)点到直线距离公式:一点到直线的距离

(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。

2021高一数学知识点总结15

圆的方程定义:

圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

①dR,直线和圆相离、

2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

切线的性质

⑴圆心到切线的距离等于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足。

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线。

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

《2021高一数学知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式